Math 206B Lecture 5 Notes

Daniel Raban

January 16, 2019

1 Tableau

1.1 Young diagrams and tableau

We want to work toward the following theorem:

Theorem 1.1. $M^{\mu} = \bigoplus_{\lambda \geq \mu} m_{\mu,\lambda} S^{\lambda}$, where

$$m_{\mu,\lambda} := \langle M^{\mu}, S^{\lambda} \rangle = \frac{1}{n!} \sum_{\nu} z_{\nu} \chi_{M^{\mu}}[\nu] \chi_{S^{\lambda}}[\nu].$$

Definition 1.1. Given a partition λ , the **Young diagram** of λ is the partition expressed as stacked rows of boxes.

Example 1.1. Take $\lambda = (4, 3, 3, 2, 1)$. The Young diagram of λ is

Definition 1.2. A standard Young tableau¹ is a Young diagram where we fill in the boxes with the numbers 1 to n, according to the rule that the numbers have to be increasing going to the right and going down.

Example 1.2. Here is a Young tableau:

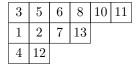
1	2	3	7
4	5	10	
6	8		
9	12		
11		•	

¹The plural of tableau is tableaux.

1.2 Poly-tabloids and their relation to irreducible representations of S_n

Definition 1.3. A **tabloid** is a Young diagram filled with the numbers $\{1, \ldots, n\}$. A **standard tabloid** is the same thing, except you need that numbers are increasing going to the right.

Example 1.3. Here is a tabloid:



Observe that λ -tabloids are in bijection with λ -flags.

Definition 1.4. A poly-tabloid is an equivalence class of tabloids under the action of $S_{\lambda_1} \times S_{\lambda_2} \times \cdots$.

Let $R^{\lambda} = S_{\lambda_1} \times S_{\lambda_2} \times \cdots$ be the group of row permutations on λ -tabloids, and let $C^{\lambda} = S_{\lambda'_1} \times S_{\lambda'_2} \times \cdots$ be the group of column permutations on λ -tabloids. Let

$$\mathcal{X}_{\lambda} = \sum_{\sigma \in C^{\lambda}} \operatorname{sign}(\sigma) \sigma$$

be an element of the group algebra $\mathbb{C}[S_n]$.

Example 1.4. Let $\lambda = (3 2)$.

Then $\mathcal{X}_{\lambda} = (1 - (1 \ 4))(1 - (2 \ 5))$. where 1 is the identity in the group algebra.

We can also think of M^{λ} as S_n acting on $\mathbb{C} \langle \lambda - \text{poly-tabloids} \rangle$. Define $e_t := \mathcal{X}_t \{t\}$, where \mathcal{X}_t is the projection of \mathcal{X} onto $\mathbb{C} \langle \{t\} \rangle$.

Example 1.5. Suppose

t =	4	1	2
-	3	5	

Then

$e_t =$	4	1	2	_	3	1	2	_	4	5	2	+	3	5	2
- U	3	5			4	5			3	1			4	5	

Theorem 1.2. The S_n action on e_t for t a λ -tabloid is an irreducible representation S^{λ} .

What is the idea here? Start with λ , and construct a λ -tabloid t. Now \mathcal{X}_t is the element of $\mathbb{C}[S_n]$ corresponding to t. Then $e_t = \mathcal{X}_t\{t\}$ is a linear combination of poly-tabloids. If we let $W_{\lambda} = \mathbb{C} \langle \{t\} \rangle$ be the linear span of poly-tabloids $(M^{\lambda} \operatorname{acts} \operatorname{on} W_{\lambda})$, then $\sigma \cdot e_t \in E_{\lambda}$. Now we can think of $\mathbb{C} \langle \{\sigma e_t : \sigma \in S_n\} \rangle$. The claim is that this is isomorphic to S^{λ} . That is, if we define S^{λ} like this, then the claim is that these are all irreducible and distinct.